The State of Retirement Income Preparation and Future Prospects

(Results from the updated EBRI/ERF Retirement Security Project Model (RSPM))

EBRI Policy Forum #66

May 13, 2010

Jack VanDerhei and Craig Copeland Employee Benefit Research Institute

Key Points from Today's Presentation

- What percentage of the population is "at risk" with respect to retirement income adequacy?
 - Who are they (age and/or income)?
 - Impact of employer-sponsored retirement plans.
 - Impact of changing baseline assumptions (rate of return).
 - Impact of the utilization of net housing equity.
- How will future policy changes affect who is at risk?
 - Social Security benefits.
 - o Medicare benefits.
- How much would those at risk need to save to eliminate the deficits?
- How "secure" do they want to be?
 - Simply using average life expectancy, rates of return, medical costs, etc.
 - ✓ In essence, only enough to expect adequacy 50 percent of the time.
 - Or would a 70 or 90 percent probability of success be a "better" target?

Brief Chronology of the EBRI/ERF Retirement Security Projection Model[™]

- 2001, Oregon
 - Simulated retirement wealth vs. ad hoc thresholds for retirement expenses
- 2002, Kansas and Massachusetts
 - o Full stochastic retiree model
 - Investment risk
 - ✓ Longevity risk
 - ✓ Nursing home and home health care costs
 - Net housing equity
- 2003, National model
 - o Expanded to full national sample
- 2004, Senate Aging testimony
 - Impact of everyone saving another 5 percent of compensation
- 2004, EBRI Policy forum
 - Impact of annuitizing defined contribution/IRA balances

- 2006, EBRI Issue Brief
 - Evaluation of defined benefit freezes on participants
- 2006, EBRI Issue Brief
 - Converted into a streamlined individual version for the ballpark estimate – Monte Carlo
- 2008, EBRI policy forum
 - Impact of converting 401(k) plans to automatic enrollment
- 2009, Pension Research Council symposium
 - Winners/losers analysis of defined benefit freezes and enhanced defined contribution employer contributions provided as a quid pro quo
- 2010, EBRI Issue Brief
 - Impact of modification of employer contributions when they convert to automatic enrollment for 401(k) plans

Modeling Innovations in the EBRI/ERF Retirement Security Projection Model

- Pension plan parameters coded from a time series of several hundred plans.
- 401(k) asset allocation and contribution behavior based on individual administrative records:
 - More than 24 million employees in 50,000 plans.
- Housing equity modeled under three scenarios.
- Stochastic modeling of nursing facility care and home based health care.

Retirement Income

- Limited to income produced by
 - Public and private retirement plans (including IRAs)
 - Social Security
 - Housing equity
- Assumes retirement income commences at age 65 (baseline)
 - Purposely conservative with respect to reported deficits

Retirement "Adequacy"

- Year-by-year comparison of:
 - Deterministic and simulated retirement expenditures vs.
 - Retirement income (for most defined benefit plans and Social Security) and
 - Account balances that may be spent as desired (defined contribution and cash balance plans and IRAs).

Retirement Expense Assumptions

- Decomposed total expenditures for retirees into:
 - Those that are deterministic:
 - Food, apparel and services, transportation, entertainment, reading and education, housing, and basic health expenditures.
 - Those that are stochastic:
 - \checkmark Home health care and nursing home care.
- Performed <u>annual</u> simulations on U.S. families with a retiree to determine if each retiree would:
 - o Require home health care,
 - o Enter a nursing home,
 - o Die, or
 - Continue to survive without incurring any of these stochastic health costs.

Model Output: Simulated Expenditure Analysis

- Modeled the health expenditures covered by Medicaid based on the federal Supplemental Security Income program resource and income standards.
- Computed the annual differential, if any, between the total expenses (less those covered by Medicaid) and the retirement income.
- If total net expenses are simulated to exceed the total retirement income for a year:
 - The households are assumed to spend down their individual account balances until the point at which they are exhausted.
- The present value of the annual deficits are then accumulated for each observation.

Housing Equity Assumptions

Three different scenarios were modeled:

- 1. Housing equity never liquidated.
- 2. Housing equity annuitized at retirement.
- Housing equity is not liquidated until "needed" and then the residual value is not annuitized.

Individual Savings Shortfalls for Meeting Basic Expenses

- Definition of basic expenses:
 - Basic living expenses and any expense associated with an episode of care in a nursing home or from a home health care provider.
- Following slides shows results by:
 - o Birth cohort.
 - Income quartile:
 - Function of all future years of work, not just current year or year prior to retirement.
- We assume individuals want a better than 50/50 chance of having "sufficient" retirement income to cover basic expenses:
 - Model a 50, 70 and 90 percent probability of retirement income adequacy
- For those with retirement income deficits, the model computes <u>ADDITIONAL</u> savings needed from 2010 until age 65 as a percentage of compensation.

Chart 1: Baseline RSPM vs. National Retirement Risk Index (NRRI)

Percentage of population "at risk" for inadequate retirement income, by age cohort (baseline assumptions)

ebri.org Employee Benefit Research Institute Sources: EBRI/ERF Retirement Security Projection Model [™] version 100504e; "The National Retirement Risk Index: After the Crash," Center for Retirement Research at Boston College, October 2009; "Long-term Care Costs and the National Retirement Risk Index," Center for Retirement Research at Boston College, March 2009 [®] 2010 Employee Benefit Research Institute

Chart 2: Impact of "salary" on at risk probability

Percentage of population "at risk" for inadequate retirement income, by age-specific remaining career income quartiles (baseline assumptions)

Chart 3: Impact of age and "salary" on at risk probabilities

Percentage of population "at risk" for inadequate retirement income, by age cohort and age-specific remaining career income quartiles (baseline assumptions)

Chart 4: Impact of age and future years of eligibility for participation in a defined contribution plan on at risk probabilities

Percentage of population "at risk" for inadequate retirement income, by age cohort and future years eligible for participation in a defined contribution plan (baseline assumptions)

Chart 5: Impact of lowering the rate of return assumptions from 8.9% equity and 6.3% fixed income, to 4.45% equity and 3.8% fixed income

Chart 6: Impact of reducing Social Security benefits by 24 percent starting in 2037

Chart 7: Impact of Medicare modifications*

Research Institute

*Medicare beneficiaries will receive on average \$11,000 per year indexed for inflation by a blended rate of the CPI and the medical care component of the CPI. The payment amount is modified based on income: beneficiaries with incomes below \$80,000 (\$160,000 for couples) receive full standard payment amounts; beneficiaries with annual incomes between \$80,000 and \$200,000 (\$160,000 to \$400,000 for couples) receive 50 percent of the standard; and beneficiaries with incomes above \$200,000 (\$400,000 for couples) receive 30 percent.

60% 50% 40% Baseline 30% 20% Medicare modifications 10% 0% early boomers late boomers gen xers Sources: EBRI/ERF Retirement Security Projection Model [™] version 100504e vs. ebri.org 100504e2; **Employee Benefit**

Percentage of population "at risk" for inadequate retirement income, by age cohort

http://www.roadmap.republicans.budget.house.gov/plan/#Healthsecurity

Chart 7a: Impact of Medicare and Social Security modifications combined

Chart 7b: Impact of mandatory 3 percent add-on

Chart 7c: Impact of Medicare and Social Security modifications, combined with 3 percent add-on

Chart 8 Impact of net housing equity utilization

Percentage of population "at risk" for inadequate retirement income, by age cohort

* This option assumes the net housing equity is used when other financial resources are exhausted and used as a lump-sum distribution.

** This option assumes the net housing equity is annuitized at the time of retirement

ebri.org Employee Benefit Research Institute Source: EBRI/ERF Retirement Security Projection Model [™] version 100504e vs. 100504e3 and 100504e4

Percentage of additional compensation that needs to be saved each year from 2010 until age 65 to eliminate retirement income inadequacy

- Three different levels of certainty:
 - o 50 percent.
 - o 70 percent.
 - o 90 percent.
- Two different summary statistics from each distribution:
 - o Median.
 - o 75th percentile.

Chart 9: Amounts needed to be saved for a 50 percent probability of success

Median vs. 75th percentile percentage of additional compensation that must be saved each year until retirement age for a 50 percent probability of "adequate" retirement income, by age cohort and age-specific salary guartiles (baseline assumptions) 25% 20% 15% Lowest 10% 2 3 5% Highest 0% early late gen xers, early late gen xers, boomers, boomers, medians boomers, boomers, 75th pctl medians medians 75th pctl 75th pctl ebri.org

Employee Benefit

Research Institute

Source: EBRI/ERF Retirement Security Projection Model [™] version 100504e Note: 25% = 25% or more

Chart 10: Amounts needed to be saved for a 70 percent probability of success

Median vs. 75th percentile percentage of additional compensation that must be saved each year until retirement age for a 70 percent probability of "adequate" retirement income, by age cohort and age-specific salary guartiles (baseline assumptions)

Employee Benefit

Research Institute

Source: EBRI/ERF Retirement Security Projection Model [™] version 100504e Note: 25% = 25% or more

Chart 11: Amounts needed to be saved for a <u>90 percent probability of success</u>

Median vs. 75th percentile percentage of additional compensation that must be saved each year until retirement age for a 90 percent probability of "adequate" retirement income, by age cohort and age-specific salary guartiles (baseline assumptions)

Note: 25% = 25% or more

Employee Benefit

Research Institute

This type of analysis can be broken down by several additional variables

- The next six slides are similar to the previous three:
 - However, the results are broken down as a function of what percentage of FUTURE years of employment will the employee be eligible to participate in a defined contribution plan.
- Similar results (not shown here) can be run for:
 - Years actually participating in a defined contribution plan.
 - Years eligible and/or participating in a defined benefit plan.
 - Years eligible and/or participating in either a defined benefit plan or defined contribution plan.
 - Years eligible and/or participating in both a defined benefit plan or defined contribution plan.
 - Type of 401(k) plan offered (e.g., automatic enrollment).
 - Cashout behavior at job change:
 - ✓ Number of times or percentage of account balance.

Chart 12: Amounts needed to be saved for a <u>50 percent</u> probability of retirement income adequacy, as a function of the percentage of future years of eligibility for participation in a defined contribution plan

<u>Median</u> percentage of additional compensation that must be saved each year until retirement age for a 50 percent probability of "adequate" retirement income, by age cohort and age-specific salary quartiles (baseline assumptions)

Source: EBRI/ERF Retirement Security Projection Model [™] version 100504e. Note: 25% = 25% or more.

Chart 13: Amounts needed to be saved for a <u>70 percent</u> probability of retirement income adequacy as a function of the percentage of future years of eligibility for participation in a defined contribution plan

<u>Median</u> percentage of additional compensation that must be saved each year until retirement age for a 70 percent probability of "adequate" retirement income, by age cohort and age-specific salary quartiles (baseline assumptions)

Source: EBRI/ERF Retirement Security Projection Model [™] version 100504e. Note: 25% = 25% or more.

Chart 14: Amounts needed to be saved for a <u>90 percent</u> probability of retirement income adequacy as a function of the percentage of future years of eligibility for participation in a defined contribution plan

<u>Median</u> percentage of additional compensation that must be saved each year until retirement age for a 70 percent probability of "adequate" retirement income, by age cohort and age-specific salary quartiles (baseline assumptions)

Source: EBRI/ERF Retirement Security Projection Model TM version 100504e. Note: 25% = 25% or more.

Chart 15: Amounts needed to be saved for a <u>50 percent</u> probability of retirement income adequacy as a function of the percentage of future years of eligibility for participation in a defined contribution plan

<u>75th percentile</u> percentage of additional compensation that must be saved each year until retirement age for a 50 percent probability of "adequate" retirement income, by age cohort and age-specific salary quartiles (baseline assumptions)

Source: EBRI/ERF Retirement Security Projection Model [™] version 100504e. Note: 25% = 25% or more.

Chart 16: Amounts needed to be saved for a <u>70</u> percent probability of retirement income adequacy as a function of the percentage of future years of eligibility for participation in a defined contribution plan

<u>75th percentile</u> percentage of additional compensation that must be saved each year until retirement age for a 70 percent probability of "adequate" retirement income, by age cohort and age-specific salary quartiles (baseline assumptions)

Source: EBRI/ERF Retirement Security Projection Model [™] version 100504e Note: 25% = 25% or more

Chart 17: Amounts needed to be saved for a <u>90 percent</u> probability of retirement income adequacy as a function of the percentage of future years of eligibility for participation in a defined contribution plan

<u>75th percentile</u> percentage of additional compensation that must be saved each year until retirement age for a 90 percent probability of "adequate" retirement income, by age cohort and age-specific salary quartiles (baseline assumptions)

Source: EBRI/ERF Retirement Security Projection Model [™] version 100504e. Note: 25% = 25% or more.

Discussion

Jack VanDerhei

www.ebri.org

www.choosetosave.org

ebri.org Employee Benefit Research Institute